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Abstract: - Power-spectrum-based Mel-Frequency Cepstrum Coefficients (MFCC) is usually used as a feature 

extractor in a speaker identification system. This one-dimensional feature extraction subsystem, however, 

shows low recognition rates for identifying utterance speech signals under harsh noise conditions. In this paper, 

we have developed a speaker identification system based on Bispectrum data that is more robust to the addition 

of Gaussian noise. As one-dimensional MFCC method could not be directly used to process the two-

dimensional Bispectrum data, we proposed a two-dimensional MFCC method and its optimization using 

Genetic Algorithm (GA). Experiments using the two-dimensional MFCC method as the feature extractor and a 

Hidden Markov Model as the pattern classifier on utterance speeches contained with various levels of Gaussian 

noise are conducted. Results showed that the developed system performed higher recognition rates compare 

with that of 1D-MFCC method, especially when the 2D-MFCC with GA optimization method is utilized. 

 

Key-Words: - Speaker Identification System, 2D Mel-Frequency Cepstrum Coefficients, Bispectrum, Hidden 

Markov Model, Genetics Algorithms.  

 

1 Introduction 
Researches on automatic speech and voice 

identification system have attracted much 

interest in the last few years, motivated by the 

growth of its applications in many areas such as 

in diagnosis of a rotor crack [1], classification of 

unknown radar targets [2], medical disease and 

animal identifications [3, 4], and for personal 

and gender identification for security systems 

[5]-[10]. Speaker based personal identification is 

the process of determining a registered speaker 

when an utterance speech signal is provided. In 

this machine-based speech identification, a 

gallery of speeches is firstly enrolled to the 

system and coded for subsequent searching. 

When an unidentified speech is fetched to the 

system, a thoroughly comparison with the each 

coded speech in the gallery is conducted and the 

personnel identification is then accomplished 

when a suitable match occurs.  

The focus of this paper is to develop a feature 

extraction subsystem that could increase the 

recognition rate of the Hidden Markov Model as 

the classifier for recognizing utterance speeches 

in harsh noise conditions. We propose a feature 

extraction subsystem that consists of a 

bispectrum-based 2D-MFCC method, in order to 

increase the recognition performance of the 

power-spectrum-based 1D-MFCC method which 

has low recognition rates for discriminating 

utterance speech signals under harsh noisy 

conditions. To that purpose, a two-dimensional 

filter bank and its optimization using Genetic 

Algorithm (GA) method is proposed. The 

optimization procedure of the filter 

characteristics is accomplished by reducing the 

differences between the feature vector of a 

speech signal without Gaussian noise addition 

and the feature vector of a speech signal with 

that noise addition. By reducing the features 

differences between those two signals from the 

same speaker, the possibility of the speaker to be 

recognized correctly becomes higher. 

The remainder of this paper is organized as 

follows. In Section 2, we formulate the 

development of the 2D-MFCC filter bank and its 

application for calculating the 2D-MFCC values 

from bispectrum data. Section 3 presents the 

optimization of the 2D-MFCC filter bank using 

Genetic Algorithm. Section 4 shows the 

experimental setup and results for a data set 
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consisting of 10 speakers with 80 utterances of 

each speaker to demonstrate the effectiveness of 

the proposed method.  Finally, Section 5 is 

dedicated to summarize this study and suggest 

the future research directions.  

 
 

2  Speaker Identification System using 

2D-MFCC Filter Bank for 

Bispectrum Data 
A speaker identification system, as can be seen 

in Figure 1, can be divided into two subsystems, 

i.e., a feature extraction subsystem and a 

classification subsystem. The main function of a 

feature extraction subsystem is to transform the 

input utterance speech signal into a set of 

features for further analysis, while a 

classification subsystem is targeted to identify 

and classify the speaker by comparing the 

extracted features from the speech signal input 

with the set of known speakers in the gallery 

database.  

As the utterance speech signal is a time 

dependent signal or quasi-stationary signal, the 

characteristics of the utterance speech signal 

could be assumed as a fairly stationary signal. 

Therefore, the artificial neural networks are not 

highly reliable, and a Hidden Markov Model 

(HMM) trained by Baum Welch Algorithm for 

learning the model of each speaker, as also 

suggested in [11,12]. The processing of an 

utterance speech is conducted by firstly divided 

into frames using a filtering process, before a 

feature extraction process for each frame is 

implemented. The most current feature 

extraction subsystem usually relies on a 

conventional One-Dimensional Mel-Frequency 

Cepstrum Coefficients (MFCC) [13] method, 

which is calculated based on power spectrum 

analysis. This representation model is motivated 

by a psychoacoustic scale, mimicking the 

frequency response in the human ear.  

In the learning phase, samples of the utterance 

speech signals for a certain phrase of words are 

inputted to the database, and the system is 

trained using these reference models. In the 

learning phase, samples of the utterance speech 

signals for a certain phrase of words are inputted 

to the database, and the system is trained using 

these reference models. In its application, a 

matching score with respect to Model-i of the 

extracted input signal is computed, i=1, 2, ... , N, 

with N the number of speaker. Suppose Model-j 

is the model with the highest score, then the 

system gives label j for the input signal. The 

computational model for calculating this highest 

score is adopted from a forward algorithm such 

as in [11]-[13].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of speaker identification system 

 

 

Suppose a spectrum of a speech signal Y(f) is 

the product of the excitation spectrum X(f) and 

the frequency response of a vocal tract H(f). For 

computational simplicity, it can be also written 

as C(f) = loge|X(f)|+loge|H(f)|; and the cepstral 

coefficient c(n) is obtained by taking the inverse 

Fourier Transform of C(f). Note that H(f) varies 

slowly than X(f), so that the response of the 

vocal tract could be separated with the 

information from the excitation signal and be 

represented by a few coefficients. Since human 

auditory system has a critical band of spectrums, 

the log magnitude spectrum of the speech signal 

is decomposed into bands according to the Mel-

scaled filter bank that consists of triangular 

overlapping windows. 

Compare to the other techniques which are 

developed based on power spectrum analysis; the 

power-spectrum-based MFCC (ID-MFCC) 

method has given the highest recognition rate 

[13]. However, as the nature of the power 

spectrum analysis is not adequate to discriminate 

the utterance speech signals under harsh noise 

conditions [14]-[16], in this paper, we develop a 

higher order spectrum analysis, i.e. bispectrum-

based MFCC (2D-MFCC) method. The 

bispectrum value is theoretically robust to 

Gaussian noise [17], which has been empirically 

proved by researchers such as in [14,15].  

Represent an utterance speech as a bispectrum 

data can be described as looking at a pattern in 
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two-dimensional decision space, compared with 

that of one-dimensional decision space when it is 

represented as power spectrum data. However, a 

bispectrum-based 2D-MFCC method requires a 

two-dimensional filter bank design that differs 

with that of one-dimensional filter bank design 

for the power-spectrum-based 1D-MFCC 

method.  

In the conventional 1D-MFCC method, the filter 

bank is firstly constructed and used to transform the 

power spectrum data of the input utterance speech 

signals into their Mel-frequency spectrum. Figure 2 

shows a simplified one-dimensional Mel-filter bank. 

The bandwidth of each filter is determined by the 

spacing of the central frequencies, calculated from 

the sampling rate and the number of filters in the 

filter bank. In the proposed method, i.e. 

bispectrum-based 2D-MFCC method, the feature 

extracting subsystem is composed of a two-

dimensional MFCC filter bank in order to extract 

the two-dimensional information contained in the 

bispectrum data. The bispectrum data is 

represented as a two-dimensional vector with 

MxM elements in a two-dimensional frequency 

space of f1 and f2. In the next sections, we will 

present a brief review of the one-dimensional 

MFCC filter bank construction and the proposed 

two-dimensional MFCC filter bank construction 

for representing the Bispectrum data. 

 

 

2.1 The Construction of One-Dimensional 

MFCC Filter bank 
The 1D-MFCC filter bank design method provides a 

triangular filter bank with height of 1 at its middle 

point, and 0 at their left and right parts. As can be 

seen in Figure 2, 1D-MFCC filter bank can be 

depicted as three vertex points: (fi-1,0), (fi,1), and 

(fi+1,0) for the i
th 

filter, with i = 1, 2,…, M. As M 

filters have to be developed, the center point of each 

filter has to be determined and the distances 

between the two adjacent center points have to be 

calculated.  

Suppose each tone of a voice signal with an 

actual frequency f (Hz) can be represented as a 

subjective pitch in another frequency scale, called 

the Mel-frequency scale. The relationship of these 

features can be depicted as in Figure 3. As can be 

seen from Figure 3, when the actual frequency f is 

below 1000Hz, the relationship is linear; however, 

the relationship of the features becomes logarithmic 

when f is above 1000Hz. The relationship can also 

be written as:   

 

     

                                                             (1) 

 

 

 

 

 

 

                  

Figure 2. Structure of triangular one-dimensional 

MFCC filterbank 

  

  
 

 

Figure 3. Curve relationship between the actual 

frequency scale and its Mel-frequency scale 

 

 

Detail construction of M filters of the 1D-MFCC is 

presented in [11], [20], [21], while the algorithms 

can be written as: 

1.  Determine the number of the used filter M, and 

the highest frequency of the speech signal fhigh. 

2.  Compute the highest Mel-frequency: 
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 and the internal width 
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f
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The Mel-frequency spectrum coefficients are 

calculated as the sum of the filtered data that can 

be expressed as:  
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where i=1,2,3,…,M with M is the number of 

filter, N is the number of FFT coefficients, 

abs(X(j)) is the magnitude of j
th

 as the output 

from FFT, and Hi(f) is the height of i
th

 triangular 

at point f. The MFCC is then calculated using the 

Discrete Cosine Transform to transform the Mel-

frequency spectrum coefficients back into its 

time domain through: 
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where k=1,2,3,…,K is the number of coefficients 

and M is the number of the triangular filter.  

 

 

2.2  Bispectrum-based Data Processing of 

Speech Signals 
If {X(k)}, k=0,±1,...,±2 is a real random process, 

then the cummulant of order 3 is )2,1(3 ττX
c : 

 

 

 

 

                                                                       (9) 

     

where the summation extends over all partitions 

(s1,s2,…,sp), p=1,2,3, of the set of integers (1,2,3).  

Bispectrum, referred to as a cummulant spectra, is a 

Fourier transform of cummulant sequences, and is 

formulated as: 
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In the case of a stationary process, the cummulant 

order 3 can be formulated as: 
 

  
{ })()()(),( 21213 ττττ ++= txtxtxEc

x
      (11) 

 

 Basically, there are two approaches to predict the 

bispectrum, i.e. the parametric approach and the 

conventional approach. The conventional approach 

consists of the following three classes, i.e. an 

indirect technique, a direct technique, and a complex 

demodulates method. Because of its simplicity, in 

this research, the bispectrum data is predicted using 

the conventional indirect method, in which the detail 

of this algorithm is presented in [22].   

 

 

2.3 The Extension of 1D-MFCC Method to 

2D-MFCC Method 
The 2D-MFCC filter bank is developed as an 

extended method on developing the 1D-MFCC filter 

bank. Basically, the construction of the 2D-MFCC 

filter bank can be divided into two different 1D-

MFCC filter banks for each dimension of f1 and f2, 

respectively, and then they are combined into a 

single 2D-MFCC filter bank. For simplicity, Figure 

4 shows the combining process of only one filter 

design method. 

Suppose we have developed the 1D-MFCC filter 

bank in the first dimension f1 as f1i; i=1,. . .,M and 

the 1D-MFCC filter bank in the second dimension 

f2 as f2j; i=1,. .., N, with M=N. We then combined 

the two separate 1D-MFCC Hi(f1) and 1D-MFCC 

Hj(f2) to be integrated as a 2D-MFCC Hij(f1,f2) as a 

pyramid shape; that can be seen in Figure 4a. The 

base of the 2D pyramid filter bank is a square shape 

with its corner positions are (f1i-1,f2j-1), (f1i+1,f2j-1), 

(f1i-1,f2j+1) and (f1i+1,f2j+1); as depicted in Figure 4b. 

The connected lines between the center of the 

square shape and each of the corner points 

determined as line a, line b, line c and line d, and 

the lines equation can be written as follows:  
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Using these lines, the square shape of the pyramid 

filter bank can be divided into four quadrants as can 

be seen in Figure 4c. 
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Suppose we have Bispectrum data B(f1m,f2n) in 

two dimension frequency space such as depicted at 

Figure 4d. The height of the filtered Bispectrum 

data is calculated by firstly determine the quadrant 

of the data and compute the Hi,j(f1m,f2n), using the 

algorithm written below. 
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2. If  B(f2n)<f2j+1, and 
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    Then  B(f1m,f2n) Є quadrant II; and  
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3. If  B(f1m)>f1i-1, and 
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    Then  B(f1m,f2n) Є quadrant III; and  
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4. If  B(f1m)<f1i+1, and 
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Figure 4. The construction of 2D-MFCC filterbank 

and its calculation for Bispectrum data B(f1m,f2n).  
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Using the same calculation such as in the 1D-

MFCC method (see Eq. (2)), the Mel-frequency 

Bispectrum coefficients MFS(i,j) in this 2D-MFCC 

method is calculated through: 
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with X(i,j) is the Mel-Bispectrum coefficient for 

filter bank Hi,j(f1m,f2n), with m=1,2,…,M, 

n=1,2,…,N; M=N=128. The MFCC(i,j) for the 2D-

MFCC method is then calculated through the 2D-

cosine transform as: 
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where k=1,2,3,…,K is the number of coefficients. 
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3. Optimization of the 2D-MFCC 

Filter Bank using Genetic 

Algorithm 
We have developed a 2D MFCC method in order 

to transform Bispectrum data of a certain frame 

B(f1m,f2n) into the Mel-frequency Bispectrum data 

in two-dimension f1 and f2, respectively. Since 

the center position of each filter is very essential 

in determining the height of the filtered 

Bispectrum data Hi,j(f1m,f2n), optimizing the 

position of the filter’s center is necessary for 

reducing the total error. The goal of the optimization 

process is to minimize the difference between the 

filtered Bispectrum data Hi,j(f1m,f2n) of a speech 

signal buried with a Gaussian noise and the data 

without a Gaussian noise. To that purpose, a Genetic 

Algorithms is utilized, which can be explained as 

follows. 

In the context of one-dimensional MFCC filter 

bank optimization, Skowronsky et.al., [23, 24], have 

proposed a novel scheme on determining the filter 

bandwidth which shows significant increment of the 

recognition rates. Nasersharif et.al. [25], have 

proposed a compression of filter bank energies 

according to the presence of additional noises in 

each Mel-subband, while Burget et.al. [26] has 

proposed a linear discriminant analysis for 

optimizing the MFCC filter bank. Evolutionary 

method has been proposed by Vignolo et.al. [27], 

for optimizing the one-dimensional cepstral filter 

bank which could improve the classification rates 

for given phonemes at different noise conditions. 

However, most of the reported methods are 

developed for one-dimensional MFCC filter bank. 

Genetic algorithm (GA) is one class of an 

evolution programming for searching the 

optimum parameters within a space domain by 

imitating the principles of natural evolution [28].  

Algorithm 1 gives the structure of an evolution 

program that usually used in GA.  GA can be 

considered as a probabilistic algorithm which 

maintains a population of individuals, 

},...,,{)( 21

t

n

tt
xxxtP = for iteration of t, in which 

each individual represents a potential solution to 

the problem.  Each solution 
t

ix  is evaluated to 

give some measure of its “fitness”. A new 

population is constructed at each iteration, by 

selecting fitter individuals which replacing the 

individuals with lower fitness value (see: select 

step).  Some members of the new population 

undergo transformations (see: alter step) by 

means of “genetic” operators to form new 

solutions. 

Algorithm 1. The structure of the Genetic 

Algorithm 
 

Begin 

t←0 

initialize P(t) 

evaluate P(t) 

while (not termination-condition) do 

begin 
 t←t+1 

 select P(t) from P(t-1) 

 alter P(t) 

 evaluate P(t) 

end 

end 
 

 

Those genetic operators are unary 

transformations mi (mutation type), which create 

new individuals by a small change in a single 

individual (mi:S�S); and higher order 

transformations cj (crossover type), which create 

new individuals by combining parts from several 

(two or more) individuals (cj:SxSx…xS�S). 

After some number of generations the program 

converges, creating the best individual represents 

a near-optimum solution [29].   

 

 

3.1 Chromosome Representation 
Suppose M is the maximum number of a 

triangular filter bank on each frequency 

dimension f1 and f2, respectively, and F is the 

maximum frequency on each dimension. 

Determine the distance between each of the 

center position of those filter banks as x1, x2, x3, 

…, xM+1 such that x1+x2+x3+ …+xM+1=F, where 

xi is the distance between i
th

 filter center with the 

next (i+1)
th

 filter center, with i=2,3,4,…,M.  

The distance between two filter centers is 

coded into a 7 binary digits, then the 

chromosome that represents a set of filter banks 

can be coded by binary digit with a length of 

7*(M+1) digits, i.e., the first seven digits for x1, 

the second seven digits for x2, and so on. A 

simple illustration of the chromosome 

representation process is depicted in Figure 5.  

Suppose we have four triangular filter banks 

on one-dimensional frequency domain, with their 

center positions are as follows 2.5, 4.5, 6.5 and 8, 

and the maximum frequency F is 10. The 

distances between each filter centers will be 

x1=2.5, x2=4.5-2.5=2, x3=6.5-4.5=2, x4=8-

6.5=1.5, and x5=10-8=2. The chromosome then 

consists of 5 locuses, i.e. x1, x2, x3, x4, and x5, in 

which each locus is coded by a binary digit with 

length of 7 to be 7*5=35 digits, as shown in 

Figure 5.  
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Figure 5. Illustration of coding a set of filterbank 

into chromosome with binary representation 

 

 

3.2 Fitness Function 
The fitness function is calculated so that the 

determined set of filter bank produced a filtered 

bispectrum data with very similar characteristics 

between input speech signals added with Gaussian 

and that of the original speech signals, i.e., without 

Gaussian noise addition. This fitness function can be 

mathematically formulated as follows: 
                       

         
),(*),(

),(*),(
)(

3321

4231

BBdBBd

BBdBBd
ifitness =         (26) 

 

where B1 is bispectrum data B(f1m,f2n) of signal 

without noise addition, B2 is bispectrum data 

B(f1m,f2n) of signal added with 20dB Gaussian 

noise, B3 is the B2 - B1, B4 is bispectrum data 

B(f1m,f2n) of 20dB Gaussian noise, and d(Bk,Bl) is 

the distance between a feature vector of Bispectrum 

data Bk and a feature vector of Bispectrum data Bl. 

 

 

3.3 Selection and Crossover 
A conventional roulette wheel is used to select 

the winning chromosome in population, by 

which, the chance for any chromosome to be 

selected is proportional to its fitness value. 

Crossover technique is used to alter two 

chromosomes into their offspring, and in this 

research, an arithmetic crossover technique is 

utilized.  

Suppose we has two parents, X=(x1,x2,x3,…, xN+1) 

and Y=(y1,y2,y3,…, yN+1) and by using an arithmetic 

crossover technique, their offspring are:  

                                                                                                                          

                                                                     

  

                                                                             (27)  

 

 

                                                            

                                                                             (28)    

 

where aЄ(0,1). 

 

 

3.4 Mutation 
Mutation is a process of transforming any 

chromosome to its offspring through a changing of 

its internal gene by using a certain unary operator. 

One method of the mutation process is called 

inversion technique, started with a selection of 

certain chromosome to be mutated, then generate 

two integer numbers p and q randomly, with p, 

qЄ[0,M+1], and M the number of the filter used.  

The mutation process is done by inverting the order 

of locus between selected points. 

 Figure 6 shows the comparison of the 1D-MFCC 

filter bank design using the conventional method 

with the GA-based optimization method. It is clearly 

shown that the uses of different patterns of filter 

bank lead to better performances on its application. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  A comparison between standard filter (a) 

with filter developed by GA (b) 

 

 

 

[ ] [ ]{ }*)1(,)1(' 2211 yaaxyaaxX −+−+=

[ ] [ ]{ }MM yaaxyaax )1(,...,)1( 33 −+−+

[ ] [ ]{ }*)1(,)1(' 2211 xaayxaayY −+−+=

[ ] [ ]{ }MM xaayxaay )1(,...,)1( 33 −+−+

 

Distance of two consecutive filter centers: 

x1=2.5  x2=2  x3=2  x4=1.5   x5=2 

chromosome: 

00001010000100000010100000110000100 

2. 4. 6. 8 0 10 

(a) 

(b) 
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4  Experimental Setup and Result 
Several experiments were conducted to evaluate the 

performance of the developed system. The utterance 

speech signals were recorded as WAV files, 

conducted by ten Indonesian people which are man 

and woman within 12 – 28 years old. The subjects 

were asked to say ’pudesha’ with normal tones and 

intuations, but were allowed to lengthening their 

pronountiations. Each speaker uttered 80 times and 

the speech signals were digitized by sampling rate 

of 11 kHz within the duration of 1.28 second. Each 

frame, which consists of 512 samples per frame, 

was read frame by frame with an overlap of 256 

samples between the adjacent frames. 

Training/testing paradigm is set to 50%: 50%, in 

which 400 utterance speeches were used as the 

training set, while the other 400 utterance speeches 

were taken as the testing data set.  

The bispectrum analysis of each frame is then 

conducted using the conventional indirect method as 

explained in [8]. We calculated the bispectrum of 

each frame at frequency B(f1m,f2n), and converted it 

into K coefficients of the proposed 2D-MFCC 

method (see Eq. (8)). The number of coefficients K 

is determined to be 13, and as the consequence, the 

bispectrum value of each frame could be written as a 

feature vector that consists of 13 elements. For a 

balance comparison, this value is also used for the 

other feature extraction methods, including the 

conventional 1D-MFCC method. The Hidden 

Markov Model is used as the classifier in all of the 

experiments conducted here, and three different 

methods of feature extraction subsystems, i.e. the 

conventional 1D-MFCC method, the 2D-MFCC 

method and the 2D-MFCC-GA method were 

examined and compared. 
 

 
Figure 7. Comparison of recognition rate between 

1D-MFCC with 2D-MFCC for a speech signal 

without noise addition 

Figure 7 shows the comparison of the 

recognition rate between 1D-MFCC with 2D-MFCC 

for uttered speech signal without Gaussian noise 

additions. Noted that in these experiments, we have 

used numerous hidden units in the HMM classifier 

for comparison. Experimental results depicted in 

Figure 7 show that when the three different methods 

are used to classify an utterance speech signal 

without Gaussian noise additions, the recognition 

rates were very high, i.e. 98.4%, 99.4% and 99.0% 

for 1D-MFCC, 2D-MFCC and 2D-MFCC-GA, 

respectively. 

These comparable results show that the 2D-

MFCC method is not necessary to use for 

classifying an utterance speech signal without noise 

addition. This result also confirmed that the 1D-

MFCC method, which is usually used in the 

conventional system, works appropriate enough to 

classify speakers when there are no noise 

disturbances. It is clearly seen also from this figure 

that the use of different numbers of hidden unit in 

HMM classifier has no influence to the recognition 

rates of the system. In the next experiments 

afterward, a three hidden unit HMM are used for 

convenience.  

When a Gaussian noise of 20dB is added to the 

utterance speech signals, the recognition rate of the 

1D-MFCC method is dropped to 43,2%, while the 

recognition rate of the 2D-MFCC is 45,8%, 

respectively (see Figure 9). In order to increase the 

recognition rates of the systems, the relationships 

between coefficients K (see Eq. (8)) with the MFCC 

values for both methods were analyzed; such as 

depicted in Figure 8. It is clearly seen from these 

figures, that the first coefficient of both methods is 

very sensitive to the addition of the Gaussian noise, 

suggested that omitting this coefficient on MFCC 

calculation increases the recognition rate of both 

methods. 

In the next experiments, we have removed the 

first coefficient of the MFCC methods and used the 

utterance speech signals without Gaussian noise as 

the input signal. The experimental results are 

depicted in Figure 9.  As can be seen here, it is very 

clear that the three feature extraction subsystems 

without using the first coefficient have shown very 

high recognition rates; a comparable with that of 

using the first coefficient for the same data set, such 

as depicted in Figure 7. It is confirmed that 

removing the first coefficient do not affect the 

recognition rates of the feature extraction 

subsystems for the utterance speech signals without 

Gaussian noise additions (OSS: original speech 

signal without Gaussian noise addition).  
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Figure 8. The MFCC value of various k coefficients 

for uttered voice signal without and with Gaussian 

noise of 20 dB in (a) 1D-MFCC (b) 2D-MFCC and 

(c) 2D-MFCC-GA. 

 

 

 

Figure 9. Recognition rate comparison of the 

three methods for classifying an utterance speech 

signals buried within 20dB Gaussian noise and 

without noise addition. 

 

 

Figure 10. Performance of the three developed 

systems to recognize an utterance speech signal 

buried within various intensity of Gaussian noise 

addition. 

 

 

When the utterance speech signals are buried 

with a 20dB Gaussian noise (OSS+20dB: original 

signal with 20dB Gaussian noise addition), the 

maximum recognition rates are 59.4% for the 1D-

MFCC method, 70.5% for 2D-MFCC and 88.5% for 

2D-MFCC-GA, respectively. Removing the first 

coefficient increases the recognition rates of the 1D-

MFCC method by 16%, and about 35% for the 2D-

MFCC method. The highest recognition rate, 

however, was achieved by the GA optimized 2D-

MFCC method, which increased the recognition rate 

of the 2D-MFCC method by a significantly 18% 

higher.  

The next experiment was conducted by buried 

the utterance speech signals in more harsh noise 

conditions, i.e. 10 dB and 0 dB, respectively.  A 

complete comparison of the recognition rates for the 

2D-MFCC and the 2D-MFCC-GA using an 

utterance speech signal with an addition of Gaussian 

noise of 20 dB, 10 dB and 0 dB, respectively, is 

depicted in Figure 10. As shown in this figure, when 

the intensity of the Gaussian noise is increasing, the 

recognition rate is decreased accordingly. It can also 

be seen that for all Gaussian noise intensity levels, 

the use of GA for optimization of the 2D-MFCC for 

Bispectrum signals as the feature extraction 

subsystem always gives higher recognition ability 

compared with that of the 2D-MFCC without GA.     

 

 

5 Conclusion 
We have developed the 2D-MFCC feature 

extraction method for processing bispectrum data 

from the utterance speech signals. We have 
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optimized further this 2D-MFCC filter bank design 

using Genetic Algorithm (GA) method for 

increasing the recognition capability of the system, 

especially when an uttered speech signals under 

Gaussian noise conditions are inputted.  It is shown 

that the recognition rates of the systems using 2D-

MFCC, with or without GA optimization were 

comparable with that of the 1D-MFCC method. 

However, these recognition rates decreased 

significantly when Gaussian noises were added to 

the uttered speech signals. Further analysis also 

showed that the first coefficient of both the 2D-

MFCC method and the 1D-MFCC method were 

largely influenced by the addition of Gaussian 

noises. By eliminating the first coefficient, the 

performance of the 2D-MFCC method was greatly 

improved, with 70.5% of recognition rates for the 

2D-MFCC without GA method and 88.5% for the 

2D-MFCC with GA method, respectively. For a 

comparison, the recognition rate of the 1D-MFCC 

method was only 59.4%.   
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